14 research outputs found

    Hierarchical Triple-Maglev Dual-Rate Control Over a Profibus-DP Network

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses a networked control system application on an unstable triple-magnetic-levitation setup. A hierarchical dual-rate control using a Profibus-decentralized peripherals network has been used to stabilize a triangular platform composed of three maglevs. The difficulty in control is increased by time-varying network-induced delays. To solve this issue, a local decentralized H∞ control action is complemented by means of a lower rate output feedback controller on the remote side. Experimental results show good stabilization and reference position accuracy under disturbances.Manuscript received October 24, 2011; revised July 30, 2012; accepted September 9, 2012. Manuscript received in final form October 2, 2012. Date of publication November 12, 2012; date of current version December 17, 2013. The work of R. Piza, J. Salt, and A. Cuenca was supported in part by the Spanish Ministerio de Economia under Grant DPI2011-28507-C02-01, Grant DPI2009-14744-C03-03, and Grant ENE2010-21711-C02-01 and the Generalitat Valenciana Grant GV/2010/018. The work of A. Sala was supported in part by the Spanish Ministerio de Economia under Grant DPI2011-27845-C02-01 and the Generalitat Valenciana Grant PROMETEO/2008/088. Recommended by Associate Editor C. De Persis.Pizá, R.; Salt Llobregat, JJ.; Sala, A.; Cuenca Lacruz, ÁM. (2014). Hierarchical Triple-Maglev Dual-Rate Control Over a Profibus-DP Network. IEEE Transactions on Control Systems Technology. 22(1):1-12. https://doi.org/10.1109/TCST.2012.2222883S11222

    Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels

    Full text link
    [EN] This paper presents an extended Kalman-filter-based sensor fusion approach, which enables path-following control of a holonomic mobile robot with four mecanum wheels. Output measurements of the mobile platform may be sensed at different rates: odometry and orientation data can be obtained at a fast rate, whereas position information may be generated at a slower rate. In addition, as a consequence of possible sensor failures or the use of lossy wireless sensor networks, the presence of the measurements may be nonuniform. These issues may degrade the path-following control performance. The consideration of a nonuniform dual-rate extended Kalman filter (NUDREKF) enables us to estimate fast-rate robot states from nonuniform, slow-rate measurements. Providing these estimations to the motion controller, a fast-rate control signal can be generated, reaching a satisfactory path-following behavior. The proposed NUDREKF is stated to represent any possible sampling pattern by means of a diagonal matrix, which is updated at a fast rate from the current, existing measurements. This fact results in a flexible formulation and a straightforward algorithmic implementation. A modified Pure Pursuit path-tracking algorithm is used, where the reference linear velocity is decomposed into Cartesian components, which are parameterized by a variable gain that depends on the distance to the target point. The proposed solution was evaluated using a realistic simulation model, developed with Simscape Multibody (Matlab/Simulink), of the four-mecanum-wheeled mobile platform. This model includes some of the nonlinearities present in a real vehicle, such as dead-zone, saturation, encoder resolution, and wheel sliding, and was validated by comparing real and simulated behavior. Comparison results reveal the superiority of the sensor fusion proposal under the presence of nonuniform, slow-rate measurements.Grant RTI2018-096590-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and Grant PRE2019-088467 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future".Pizá, R.; Carbonell-Lázaro, R.; Casanova Calvo, V.; Cuenca, Á.; Salt Llobregat, JJ. (2022). Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels. Applied Sciences. 12(7):1-23. https://doi.org/10.3390/app1207356012312

    Dual-Rate Extended Kalman Filter Based Path-Following Motion Control for an Unmanned Ground Vehicle: Realistic Simulation

    Full text link
    [EN] In this paper, a two-wheel drive unmanned ground vehicle (UGV) path-following motion control is proposed. The UGV is equipped with encoders to sense angular velocities and a beacon system which provides position and orientation data. Whereas velocities can be sampled at a fast rate, position and orientation can only be sensed at a slower rate. Designing a dynamic controller at this slower rate implies not reaching the desired control requirements, and hence, the UGV is not able to follow the predefined path. The use of dual-rate extended Kalman filtering techniques enables the estimation of the fast-rate non-available position and orientation measurements. As a result, a fast-rate dynamic controller can be designed, which is provided with the fast-rate estimates to generate the control signal. The fast-rate controller is able to achieve a satisfactory path following, outperforming the slow-rate counterpart. Additionally, the dual-rate extended Kalman filter (DREKF) is fit for dealing with non-linear dynamics of the vehicle and possible Gaussian-like modeling and measurement uncertainties. A Simscape Multibody (TM) (Matlab(R)/Simulink) model has been developed for a realistic simulation, considering the contact forces between the wheels and the ground, not included in the kinematic and dynamic UGV representation. Non-linear behavior of the motors and limited resolution of the encoders have also been included in the model for a more accurate simulation of the real vehicle. The simulation model has been experimentally validated from the real process. Simulation results reveal the benefits of the control solution.Grant RTI2018-096590-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF Away of making Europe" and Grant PRE2019-088467 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future".Carbonell-Lázaro, R.; Cuenca, Á.; Casanova Calvo, V.; Pizá, R.; Salt Llobregat, JJ. (2021). Dual-Rate Extended Kalman Filter Based Path-Following Motion Control for an Unmanned Ground Vehicle: Realistic Simulation. Sensors. 21(22):1-17. https://doi.org/10.3390/s21227557117212

    A delay-dependent dual-rate PID controller over an ethernet network

    Full text link
    n this paper, a methodology to design controllers able to cope with different load conditions on an Ethernet network is introduced. Load conditions induce time-varying delays between measurements and control. To face these variations an interpolated, delay-dependent gain scheduling law is used. The lack of synchronization is solved by adopting an event-based control approach. The dual-rate control action computation is carried out at a remote controller, whereas control actions and measurements are taken out locally at the controlled process site. Stability is proved in terms of probabilistic linear matrix inequalities. TrueTime simulations in an Ethernet case show the benefit of the proposal, which is later validated on an experimental test-bed Ethernet environment.Manuscript received June 07, 2010; revised September 05, 2010; accepted September 15, 2010. Date of publication October 18, 2010; date of current version February 04, 2011. The authors A. Cuenca, J. Salt, and R. Piza are grateful to Grant PAID06-08 by the Universidad Politecnica de Valencia, Grant dpi2009-14744-c03-03 from the Spanish Ministry of Education, and Grant gv/2010/018 by Generalitat Valenciana. In addition, A. Cuenca is grateful to Grant dpi2008-06737-c02-01 by the Spanish Ministry of Education, and A. Sala is grateful to the financial support of the Spanish Ministry of Education Research Grant dpi2008-06731-c02-01, and Generalitat Valenciana Grant prometeo/2008/088. Paper no. TII-10-06-0127.Cuenca Lacruz, ÁM.; Salt Llobregat, JJ.; Sala Piqueras, A.; Pizá Fernández, R. (2011). A delay-dependent dual-rate PID controller over an ethernet network. IEEE Transactions on Industrial Informatics. 7(1):18-29. doi:10.1109/TII.2010.2085007S18297

    Delay-independent dual-rate PID controller for a packet-based networked control system

    Full text link
    [EN] In this paper, a novel delay-independent control structure for a networked control system (NCS) is proposed, where packet-based control strategies with predictor-based and dual-rate control techniques are integrated. The control solution is able to cope with some networked communication problems such as time-varying delays, packet dropouts and packet disorder. In addition, the proposed approach enables to reduce network load, and usage of connected devices, while maintaining a satisfactory control performance. As a delay-independent control solution, no network-induced delay measurement is needed for controller implementation. In addition, the control scheme is applicable to open-loop unstable plants. Control system stability is ensured in terms of linear matrix inequalities (LMIs). Simulation results show the main benefits of the control approach, which are experimentally validated by means of a Cartesian-robot-based test-bed platform. (C) 2019 Elsevier Inc. All rights reserved.This work is funded by European Commission as part of Project H2020-SEC-2016-2017, Topic: SEC-20-BES-2016 Id: 740736 C2 Advanced Multi-domain Environment and Live Observation Technologies (CAMELOT). Part WP5 supported by Tekever ASDS, Thales Research & Technology, Viasat Antenna Systems, Universitat Politècnica de València, Fundação da Faculdade de Ciências da Universidade de Lisboa, Ministério da Defesa Nacional Marinha Portuguesa, Ministério da Administração Interna Guarda Nacional Republicana.Alcaina-Acosta, JJ.; Cuenca, Á.; Salt Llobregat, JJ.; Casanova Calvo, V.; Pizá, R. (2019). Delay-independent dual-rate PID controller for a packet-based networked control system. Information Sciences. 484:27-43. https://doi.org/10.1016/j.ins.2019.01.059S274348

    A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System

    Full text link
    [EN] This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. (C) 2018 ISA. Published by Elsevier Ltd. All rights reserved.This work is funded by European Commision as part of Project H2020-SEC-2016-2017 Topic: SEC-20-BES-2016 Id: 740736 C2 Advanced Multi-domain Environment and Live Observation Technologies (CAMELOT). Part WP5 supported by Tekever ASDS, Thales Research & Technology, Viasat Antenna Systems, Universitat Politècnica de València, Fundação da Faculdade de Ciências da Universidade de Lisboa, Ministério da DefesaNacional Marinha Portuguesa, Ministério da Administração Interna Guarda Nacional Republicana.Cuenca, Á.; Alcaina-Acosta, JJ.; Salt Llobregat, JJ.; Casanova Calvo, V.; Pizá, R. (2018). A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System. ISA Transactions. 76:155-166. https://doi.org/10.1016/j.isatra.2018.02.022S1551667

    Linear matrix inequalities in multirate control over networks

    Full text link
    This paper faces two of the main drawbacks in networked control systems: bandwidth constraints and timevarying delays. The bandwidth limitations are solved by using multirate control techniques. The resultant multirate controller must ensure closed-loop stability in the presence of time-varying delays. Some stability conditions and a state feedback controller design are formulated in terms of linear matrix inequalities. The theoretical proposal is validated in two different experimental environments: a crane-based test-bed over Ethernet, and a maglev based platform over Profibus. © 2012 Ángel Cuenca et al.The authors A. Cuenca, R. Piza, and J. Salt are grateful to the Spanish Ministry of Education research Grants DPI2011-28507-C02-01 and DPI2009-14744-C03-03, and Generalitat Valenciana Grant GV/2010/018. A. Sala is grateful to the financial support of Spanish Ministry of Economy research Grant DPI2011-27845-C02-01, and Generalitat Valenciana Grant PROMETEO/2008/088.Cuenca Lacruz, ÁM.; Pizá, R.; Salt Llobregat, JJ.; Sala Piqueras, A. (2012). Linear matrix inequalities in multirate control over networks. Mathematical Problems in Engineering. 2012(768212):1-22. doi:10.1155/2012/768212S1222012768212Tipsuwan, Y., & Chow, M.-Y. (2003). Control methodologies in networked control systems. Control Engineering Practice, 11(10), 1099-1111. doi:10.1016/s0967-0661(03)00036-4Halevi, Y., & Ray, A. (1988). Integrated Communication and Control Systems: Part I—Analysis. Journal of Dynamic Systems, Measurement, and Control, 110(4), 367-373. doi:10.1115/1.3152698Yang, T. C. (2006). Networked control system: a brief survey. IEE Proceedings - Control Theory and Applications, 153(4), 403-412. doi:10.1049/ip-cta:20050178Cuenca, Á., Salt, J., Sala, A., & Piza, R. (2011). A Delay-Dependent Dual-Rate PID Controller Over an Ethernet Network. IEEE Transactions on Industrial Informatics, 7(1), 18-29. doi:10.1109/tii.2010.2085007Tipsuwan, Y., & Chow, M.-Y. (2004). On the Gain Scheduling for Networked PI Controller Over IP Network. IEEE/ASME Transactions on Mechatronics, 9(3), 491-498. doi:10.1109/tmech.2004.834645Hu, J., Wang, Z., Gao, H., & Stergioulas, L. K. (2012). Robust Sliding Mode Control for Discrete Stochastic Systems With Mixed Time Delays, Randomly Occurring Uncertainties, and Randomly Occurring Nonlinearities. IEEE Transactions on Industrial Electronics, 59(7), 3008-3015. doi:10.1109/tie.2011.2168791Wing Shing Wong, & Brockett, R. W. (1999). Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback. IEEE Transactions on Automatic Control, 44(5), 1049-1053. doi:10.1109/9.763226Casanova, V., Salt, J., Cuenca, A., & Piza, R. (2009). Networked Control Systems: control structures with bandwidth limitations. International Journal of Systems, Control and Communications, 1(3), 267. doi:10.1504/ijscc.2009.024556Cuenca, A., García, P., Albertos, P., & Salt, J. (2011). A Non-Uniform Predictor-Observer for a Networked Control System. International Journal of Control, Automation and Systems, 9(6), 1194-1202. doi:10.1007/s12555-011-0621-5Tian, Y.-C., & Levy, D. (2008). Compensation for control packet dropout in networked control systems. Information Sciences, 178(5), 1263-1278. doi:10.1016/j.ins.2007.10.012Wang, Z., Shen, B., Shu, H., & Wei, G. (2012). Quantized HH_{\infty } Control for Nonlinear Stochastic Time-Delay Systems With Missing Measurements. IEEE Transactions on Automatic Control, 57(6), 1431-1444. doi:10.1109/tac.2011.2176362Wang, Z., Shen, B., & Liu, X. (2012). H∞ filtering with randomly occurring sensor saturations and missing measurements. Automatica, 48(3), 556-562. doi:10.1016/j.automatica.2012.01.008Ma, L., Wang, Z., Bo, Y., & Guo, Z. (2011). Finite-horizonℋ2/ℋ∞control for a class of nonlinear Markovian jump systems with probabilistic sensor failures. International Journal of Control, 84(11), 1847-1857. doi:10.1080/00207179.2011.627379Li, J.-N., Cai, M., Wang, Y.-L., & Zhang, Q.-L. (2009). H∞ control of networked control systems with packet disordering. IET Control Theory & Applications, 3(11), 1463-1475. doi:10.1049/iet-cta.2008.0416Time synchronization in a local area network. (2004). IEEE Control Systems, 24(2), 61-69. doi:10.1109/mcs.2004.1275432Sala, A., Cuenca, Á., & Salt, J. (2009). A retunable PID multi-rate controller for a networked control system. Information Sciences, 179(14), 2390-2402. doi:10.1016/j.ins.2009.02.017Sala, A. (2005). Computer control under time-varying sampling period: An LMI gridding approach. Automatica, 41(12), 2077-2082. doi:10.1016/j.automatica.2005.05.017Salt, J., & Albertos, P. (2005). Model-based multirate controllers design. IEEE Transactions on Control Systems Technology, 13(6), 988-997. doi:10.1109/tcst.2005.857410Cuenca, Á., Salt, J., & Albertos, P. (2006). Implementation of algebraic controllers for non-conventional sampled-data systems. Real-Time Systems, 35(1), 59-89. doi:10.1007/s11241-006-9001-2Lall, S., & Dullerud, G. (2001). An LMI solution to the robust synthesis problem for multi-rate sampled-data systems. Automatica, 37(12), 1909-1922. doi:10.1016/s0005-1098(01)00167-4Shi, Y., Fang, H., & Yan, M. (2009). Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs. International Journal of Robust and Nonlinear Control, 19(18), 1976-1992. doi:10.1002/rnc.1390Li, D., Shah, S. L., & Chen, T. (2002). Analysis of dual-rate inferential control systems. Automatica, 38(6), 1053-1059. doi:10.1016/s0005-1098(01)00295-3Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory. doi:10.1137/1.9781611970777Yun-Bo Zhao, Guo-Ping Liu, & Rees, D. (2009). Modeling and Stabilization of Continuous-Time Packet-Based Networked Control Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6), 1646-1652. doi:10.1109/tsmcb.2009.2027714Salt, J., Casanova, V., Cuenca, A., & Pizá, R. (2008). Sistemas de Control Basados en Red Modelado y Diseño de Estructuras de Control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(3), 5-20. doi:10.1016/s1697-7912(08)70157-2Yang Shi, & Bo Yu. (2009). Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains. IEEE Transactions on Automatic Control, 54(7), 1668-1674. doi:10.1109/tac.2009.2020638Shi, Y., & Yu, B. (2011). Robust mixed H2/H∞ control of networked control systems with random time delays in both forward and backward communication links. Automatica, 47(4), 754-760. doi:10.1016/j.automatica.2011.01.022Van Loan, C. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23(3), 395-404. doi:10.1109/tac.1978.1101743Khargonekar, P., Poolla, K., & Tannenbaum, A. (1985). Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control, 30(11), 1088-1096. doi:10.1109/tac.1985.1103841Marti, P., Yepez, J., Velasco, M., Villa, R., & Fuertes, J. M. (2004). Managing Quality-of-Control in Network-Based Control Systems by Controller and Message Scheduling Co-Design. IEEE Transactions on Industrial Electronics, 51(6), 1159-1167. doi:10.1109/tie.2004.837873Tipsuwan, Y., & Chow, M.-Y. (2004). Gain Scheduler Middleware: A Methodology to Enable Existing Controllers for Networked Control and Teleoperation—Part I: Networked Control. IEEE Transactions on Industrial Electronics, 51(6), 1218-1227. doi:10.1109/tie.2004.837866Apkarian, P., & Adams, R. J. (1998). Advanced gain-scheduling techniques for uncertain systems. IEEE Transactions on Control Systems Technology, 6(1), 21-32. doi:10.1109/87.654874Montestruque, L. A., & Antsaklis, P. (2004). Stability of Model-Based Networked Control Systems With Time-Varying Transmission Times. IEEE Transactions on Automatic Control, 49(9), 1562-1572. doi:10.1109/tac.2004.834107Sturm, J. F. (1999). Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1-4), 625-653. doi:10.1080/1055678990880576

    Augmentation Channel Design for a Marine Current Turbine in a Floating Cogenerator

    Full text link
    [EN] In this paper we present a Hydro-Wind Kinetics Integrated Module for Renewable Energy Generation. HYWIKIM is a floating device combining wind and marine current generators for generating renewable energy. Its purpose is to exploit resources in an integrated manner using wind and current turbines in offshore plants thereby optimizing the financial investment. Our research focuses on the design and analysis of different types of augmentation channels to increase efficiency using shrouded Marine Current Turbines (MCTs) in conditions of low intensity flows.García Moreno, E.; Pizá Fernández, R.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2017). Augmentation Channel Design for a Marine Current Turbine in a Floating Cogenerator. IEEE Latin America Transactions. 15(6):1068-1076. doi:10.1109/TLA.2017.7932694S1068107615

    Mechanical Augmentation Channel Design for Turbine Current Generators

    Full text link
    We present the design and analysis of augmentation channels to increase the efficiency of shrouded marine current turbines in conditions of low intensity flows. These turbines are part of a prototype of a floating device composed of wind and marine current generators for generating renewable energy. It intends to exploit renewable energy resources in an integrated manner using wind and current turbines in offshore plants optimizing the economic investment.García Moreno, E.; Pizá Fernández, R.; Benavides, X.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2014). Mechanical Augmentation Channel Design for Turbine Current Generators. Advances in Mechanical Engineering. 2014:1-12. doi:10.1155/2014/650131S1122014Namik, H., & Stol, K. (2010). Individual blade pitch control of floating offshore wind turbines. Wind Energy, 13(1), 74-85. doi:10.1002/we.332Lackner, M. A., & Rotea, M. A. (2011). Structural control of floating wind turbines. Mechatronics, 21(4), 704-719. doi:10.1016/j.mechatronics.2010.11.007Betti, G., Farina, M., Guagliardi, G. A., Marzorati, A., & Scattolini, R. (2014). Development of a Control-Oriented Model of Floating Wind Turbines. IEEE Transactions on Control Systems Technology, 22(1), 69-82. doi:10.1109/tcst.2013.2242073Gorban’, A. N., Gorlov, A. M., & Silantyev, V. M. (2001). Limits of the Turbine Efficiency for Free Fluid Flow. Journal of Energy Resources Technology, 123(4), 311-317. doi:10.1115/1.1414137Radkey R. L., and Hibbs B. D. “Definition of cost effective river turbine designs,” 1981 no. AV-FR-81/595 (DE82010972), U.S. Department of Energy, Pasadena, Calif, USA.Gilbert, B. L., & Foreman, K. M. (1983). Experiments With a Diffuser-Augmented Model Wind Turbine. Journal of Energy Resources Technology, 105(1), 46-53. doi:10.1115/1.3230875Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or Least Value of a Function. The Computer Journal, 3(3), 175-184. doi:10.1093/comjnl/3.3.175Gaden, D. L. F., & Bibeau, E. L. (2010). A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renewable Energy, 35(6), 1152-1158. doi:10.1016/j.renene.2009.11.023Mikkelsen, R., Sørensen, J. N., & Shen, W. Z. (2001). Modelling and analysis of the flow field around a coned rotor. Wind Energy, 4(3), 121-135. doi:10.1002/we.50Cao, Y., & Yu, Z. (2005). Numerical simulation of turbulent flow around helicopter ducted tail rotor. Aerospace Science and Technology, 9(4), 300-306. doi:10.1016/j.ast.2005.01.006Ponta, F. L., & Jacovkis, P. M. (2008). Marine-current power generation by diffuser-augmented floating hydro-turbines. Renewable Energy, 33(4), 665-673. doi:10.1016/j.renene.2007.04.008Khan, M. J., Iqbal, M. T., & Quaicoe, J. E. (2008). River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, 12(8), 2177-2193. doi:10.1016/j.rser.2007.04.01

    Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels

    No full text
    This paper presents an extended Kalman-filter-based sensor fusion approach, which enables path-following control of a holonomic mobile robot with four mecanum wheels. Output measurements of the mobile platform may be sensed at different rates: odometry and orientation data can be obtained at a fast rate, whereas position information may be generated at a slower rate. In addition, as a consequence of possible sensor failures or the use of lossy wireless sensor networks, the presence of the measurements may be nonuniform. These issues may degrade the path-following control performance. The consideration of a nonuniform dual-rate extended Kalman filter (NUDREKF) enables us to estimate fast-rate robot states from nonuniform, slow-rate measurements. Providing these estimations to the motion controller, a fast-rate control signal can be generated, reaching a satisfactory path-following behavior. The proposed NUDREKF is stated to represent any possible sampling pattern by means of a diagonal matrix, which is updated at a fast rate from the current, existing measurements. This fact results in a flexible formulation and a straightforward algorithmic implementation. A modified Pure Pursuit path-tracking algorithm is used, where the reference linear velocity is decomposed into Cartesian components, which are parameterized by a variable gain that depends on the distance to the target point. The proposed solution was evaluated using a realistic simulation model, developed with Simscape Multibody (Matlab/Simulink), of the four-mecanum-wheeled mobile platform. This model includes some of the nonlinearities present in a real vehicle, such as dead-zone, saturation, encoder resolution, and wheel sliding, and was validated by comparing real and simulated behavior. Comparison results reveal the superiority of the sensor fusion proposal under the presence of nonuniform, slow-rate measurements
    corecore